
Package: manipulate (via r-universe)
September 16, 2024

Type Package

Title Interactive Plots for RStudio

Version 1.0.1

Date 2014-12-23

Maintainer JJ Allaire <jj@rstudio.com>

Description Interactive plotting functions for use within RStudio. The
manipulate function accepts a plotting expression and a set of
controls (e.g. slider, picker, checkbox, or button) which are
used to dynamically change values within the expression. When a
value is changed using its corresponding control the expression
is automatically re-executed and the plot is redrawn.

Depends R (>= 2.11.1)

SystemRequirements RStudio - http://www.rstudio.com/products/rstudio/

License GPL-2

LazyLoad yes

Author JJ Allaire [aut, cre] (R interface), RStudio [cph]

NeedsCompilation no

Date/Publication 2014-12-24 01:18:44

Repository https://jjallaire.r-universe.dev

RemoteUrl https://github.com/cran/manipulate

RemoteRef HEAD

RemoteSha 895c8467aed40b9df1b4ed114ebf45aa9f6c1131

Contents
manipulate-package . 2
button . 3
checkbox . 4
isAvailable . 5
manipulate . 5

1

2 manipulate-package

Manipulator Custom State . 7
manipulatorMouseClick . 8
picker . 9
slider . 10

Index 12

manipulate-package Interactive Plots for RStudio

Description

Interactive plotting functions for use within RStudio.

Details

The manipulate function accepts a plotting expression and a set of controls (e.g. slider, picker,
checkbox, or button) which are used to dynamically change values within the expression. When
a value is changed using its corresponding control the expression is automatically re-executed and
the plot is redrawn.

For example, to create a plot that enables manipulation of a parameter using a slider control you
could use syntax like this:

manipulate(plot(1:x), x = slider(1, 10))

After this code is executed the plot is drawn using an initial value of 1 for x. A manipulator panel is
also opened adjacent to the plot which contains a slider control used to change the value of x from
1 to 10.

Examples

Not run:

Create a plot with a manipulator
manipulate(plot(1:x), x = slider(5, 10))

Using more than one slider
manipulate(

plot(cars, xlim=c(x.min,x.max)),
x.min=slider(0,15),
x.max=slider(15,30))

Filtering data with a picker
manipulate(

barplot(as.matrix(longley[,factor]),
beside = TRUE, main = factor),

factor = picker("GNP", "Unemployed", "Employed"))

Create a picker with labels
manipulate(

plot(pressure, type = type),

button 3

type = picker("points" = "p", "line" = "l", "step" = "s"))

Toggle boxplot outlier display using checkbox
manipulate(

boxplot(Freq ~ Class, data = Titanic, outline = outline),
outline = checkbox(FALSE, "Show outliers"))

Combining controls
manipulate(

plot(cars, xlim = c(x.min, x.max), type = type,
axes = axes, ann = label),

x.min = slider(0,15),
x.max = slider(15,30, initial = 25),
type = picker("p", "l", "b", "c", "o", "h", "s", "S", "n"),
axes = checkbox(TRUE, "Draw Axes"),
label = checkbox(FALSE, "Draw Labels"))

End(Not run)

button Create a button control

Description

Create a button control to enable triggering of conditional actions within manipulate expressions.
When the user presses the button the manipulate expression will be executed with its associated
value set to TRUE (in all other cases the value will be set to FALSE).

Usage

button(label)

Arguments

label Label for button.

Value

An object of class "manipulator.button" which can be passed to the manipulate function.

See Also

manipulate, slider, picker, checkbox

4 checkbox

Examples

Not run:

use a button to reset a random seed
manipulate(

{
if(resetSeed)

set.seed(sample(1:1000))

hist(rnorm(n=100, mean=0, sd=3), breaks=bins)
},
bins = slider(1, 20, step=1, initial =5, label="Bins"),
resetSeed = button("Reset Seed")

)

End(Not run)

checkbox Create a checkbox control

Description

Create a checkbox control to enable manipulation of logical plot variables.

Usage

checkbox(initial = FALSE, label = NULL)

Arguments

initial Initial value for checkbox. Must be logical (defaults to FALSE).

label Display label for checkbox. Defaults to the variable name if not specified.

Value

An object of class "manipulator.checkbox" which can be passed to the manipulate function.

See Also

manipulate, slider, picker, button

isAvailable 5

Examples

Not run:

Using checkboxes for boolean parameters
manipulate(

plot(cars, axes = axes, ann = label),
axes = checkbox(TRUE, "Draw Axes"),
label = checkbox(FALSE, "Draw Labels"))

Toggle boxplot outlier display using checkbox
manipulate(

boxplot(Freq ~ Class, data = Titanic, outline = outline),
outline = checkbox(FALSE, "Show outliers"))

End(Not run)

isAvailable Check whether manipulate is available

Description

Check whether manipulate is available in the current front-end environment.

Usage

isAvailable()

Details

The manipulate package works only within the RStudio front-end.

Value

TRUE if manipulate is available, otherwise FALSE.

manipulate Create an interactive plot

Description

The manipulate function accepts a plotting expression and a set of controls (e.g. slider, picker,
checkbox, or button) which are used to dynamically change values within the expression. When
a value is changed using its corresponding control the expression is automatically re-executed and
the plot is redrawn.

6 manipulate

Usage

manipulate(`_expr`, ...)

Arguments

_expr Expression to evalulate. The expression should result in the creation of a plot
(e.g. plot or qplot). Note that the expression need not be a top-level plotting
function, it could also be a custom function that creates a plot as part of its im-
plementation. This expression will be re-evaluated with appropriate parameter
substitution each time one of the manipulator control values is changed.

... One or more named control arguments (i.e. slider, picker, checkbox, or
button), or a list containing named controls.

Details

Once a set of manipulator controls are attached to a plot they remain attached and can be recalled
whenever viewing the plot (a gear button is added to the top-left of the plot to indicate that it has a
manipulator).

The _expr argument is evaluated using withVisible. If it’s return value is visible then print is
called. This enables manipulate expressions to behave simillarly to their being executed directly at
the console.

The _expr argument uses a syntactially invalid (but backtick quoted) name to avoid clashes with
named control arguments.

The manipulatorSetState and manipulatorGetState functions can be used to associate custom
state with a manipulator (for example, to track the values used for previous plot executions). These
values are stored in a custom environment which is stored along with the rest of the manipulator
context.

Examples

Not run:

Create a plot with a manipulator
manipulate(plot(1:x), x = slider(5, 10))

Using more than one slider
manipulate(

plot(cars, xlim=c(x.min,x.max)),
x.min=slider(0,15),
x.max=slider(15,30))

Filtering data with a picker
manipulate(

barplot(as.matrix(longley[,factor]),
beside = TRUE, main = factor),

factor = picker("GNP", "Unemployed", "Employed"))

Create a picker with labels
manipulate(

Manipulator Custom State 7

plot(pressure, type = type),
type = picker("points" = "p", "line" = "l", "step" = "s"))

Toggle boxplot outlier display using checkbox
manipulate(

boxplot(Freq ~ Class, data = Titanic, outline = outline),
outline = checkbox(FALSE, "Show outliers"))

Combining controls
manipulate(

plot(cars, xlim = c(x.min, x.max), type = type,
axes = axes, ann = label),

x.min = slider(0,15),
x.max = slider(15,30, initial = 25),
type = picker("p", "l", "b", "c", "o", "h", "s", "S", "n"),
axes = checkbox(TRUE, "Draw Axes"),
label = checkbox(FALSE, "Draw Labels"))

End(Not run)

Manipulator Custom State

Modify manipulator state

Description

These functions allow the storage of custom state variables across multiple evaluations of manipula-
tor expressions. These functions are useful if the manipulate expression is a custom function (rather
than a high level plotting function like plot) which requires reading and writing of persistent values.

Usage

manipulatorSetState(name, value)
manipulatorGetState(name)

Arguments

name A chraracter string holding a state variable name.

value An object holding a state value.

Value

manipulatorGetState returns a custom state value which was previously set by manipulatorSetState
(or NULL if the specified name is not found).

See Also

manipulate

8 manipulatorMouseClick

Examples

Not run:

set custom state variable
manipulatorSetState("last", x)

get custom state variable
last <- manipulatorGetState("last")
if (!is.null(last)) {

do something interesting
}

End(Not run)

manipulatorMouseClick Receive notification of mouse clicks on a manipulator plot

Description

This function can be called to determine if a mouse click on the plot was what caused the current
invocation of the manipulate expression, and to determine the coordinates which were clicked.

Usage

manipulatorMouseClick()

Details

If a mouse click did occur, then the function returns a list with the coordinates which the user clicked
on.

If a mouse click did not cause the current invocation of the manipulate expression (e.g. if it was
caused by the user changing the value of a control) then the function returns NULL.

The mouse click coordinates are provided in device, user, and ndc coordinates. To convert these
coordinates into other coordinate systems (e.g. cm or npc) you can use the grconvertX and
grconvertY functions.

Note that the userX and userY coordinates are only applicable for base graphics plots (they are
not applicable for grid, lattice, ggplot, etc). Therefore, for non-base graphics the userX and userY
values will not contain valid coordinates.

Value

Returns a list containing the coordinates that user clicked (or NULL if a mouse click didn’t occur):

deviceX Device X coordinate (expressed in pixels)
deviceY Device Y coordinate (expressed in pixels)
userX User X coordinate (expressed in plot x units). Note that this value is only valid for base graphics.

picker 9

userY User Y coordinate (expressed in plot y units). Note that this value is only valid for base graphics.
ndcX NDC X coordinate (0 to 1 from left to right)
ndcY NDC Y coordinate (0 to 1 from bottom to top)

See Also

manipulate, grconvertX, grconvertY

picker Create a picker control

Description

Create a picker control to enable manipulation of plot variables based on a set of fixed choices.

Usage

picker(..., initial = NULL, label = NULL)

Arguments

... Arguments containing objects to be presented as choices for the picker (or a list
containing the choices). If an element is named then the name is used to display
it within the picker. If an element is not named then it is displayed within the
picker using as.character.

initial Initial value for picker. Value must be present in the list of choices specified. If
not specified defaults to the first choice.

label Display label for picker. Defaults to the variable name if not specified.

Value

An object of class "manipulator.picker" which can be passed to the manipulate function.

See Also

manipulate, slider, checkbox, button

Examples

Not run:

Filtering data with a picker
manipulate(

barplot(as.matrix(longley[,factor]),
beside = TRUE, main = factor),

factor = picker("GNP", "Unemployed", "Employed"))

10 slider

Create a picker with labels
manipulate(

plot(pressure, type = type),
type = picker("points" = "p", "line" = "l", "step" = "s"))

Picker with groups
manipulate(

barplot(as.matrix(mtcars[group,"mpg"]), beside=TRUE),
group = picker("Group 1" = 1:11,

"Group 2" = 12:22,
"Group 3" = 23:32))

Histogram w/ picker to select type
require(lattice)
require(stats)
manipulate(

histogram(~ height | voice.part,
data = singer, type = type),

type = picker("percent", "count", "density"))

End(Not run)

slider Create a slider control

Description

Create a slider control to allow manipulation of a plot variable along a numeric range.

Usage

slider(min, max, initial = min,
label = NULL, step = NULL, ticks = TRUE)

Arguments

min Minimum value for slider.

max Maximum value for slider.

initial Initial value for slider. Defaults to min if not specified.

label Display label for slider. Defaults to the variable name if not specified.

step Step value for slider. If not specified then defaults to 1 for integer ranges and sin-
gle pixel granularity for floating point ranges (max - min divided by the number
of pixels in the slider).

ticks Show tick marks on the slider. Note that if the granularity of the step value
is very low (more than 25 ticks would be shown) then ticks are automatically
turned off.

slider 11

Value

An object of class "manipulator.slider" which can be passed to the manipulate function.

See Also

manipulate, picker, checkbox, button

Examples

Not run:

Create a plot with a slider
manipulate(plot(1:x), x = slider(5, 10))

Use multiple sliders
manipulate(

plot(cars, xlim = c(x.min, x.max)),
x.min = slider(0,15),
x.max = slider(15,30))

Specify a custom initial value for a slider
manipulate(

barplot(1:x),
x = slider(5, 25, initial = 10))

Specify a custom label for a slider
manipulate(

barplot(1:x),
x = slider(5, 25, label = "Limit"))

Specify a step value for a slider
manipulate(

barplot(1:x),
x = slider(5, 25, step = 5))

End(Not run)

Index

∗ dynamic
manipulate-package, 2

∗ iplot
manipulate-package, 2

∗ package
manipulate-package, 2

as.character, 9

button, 2, 3, 4–6, 9, 11

checkbox, 2, 3, 4, 5, 6, 9, 11

grconvertX, 8, 9
grconvertY, 8, 9

isAvailable, 5

manipulate, 2–5, 5, 7, 9, 11
manipulate-package, 2
Manipulator Custom State, 7
manipulatorGetState, 6
manipulatorGetState (Manipulator

Custom State), 7
manipulatorMouseClick, 8
manipulatorSetState, 6
manipulatorSetState (Manipulator

Custom State), 7

picker, 2–6, 9, 11
plot, 7
print, 6

slider, 2–6, 9, 10

withVisible, 6

12

	manipulate-package
	button
	checkbox
	isAvailable
	manipulate
	Manipulator Custom State
	manipulatorMouseClick
	picker
	slider
	Index

